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College of Medicine, Rochester, MN

Many sequence variants in predisposition genes are of uncertain clinical significance, and classification of these
variants into high- or low-risk categories is an important problem in clinical genetics. Classification of such variants
can be performed by direct epidemiological observations, including cosegregation with disease in families and degree
of family history of the disease, or by indirect measures, including amino acid conservation, severity of amino acid
change, and evidence from functional assays. In this study, we have developed an approach to the synthesis of such
evidence in a multifactorial likelihood-ratio model. We applied this model to the analysis of three unclassified
variants in BRCA1 and three in BRCA2. The evidence strongly suggests that two variants (C1787S in BRCA1 and
D2723H in BRCA2) are deleterious, three (R841W in BRCA1 and Y42C and P655R in BRCA2) are neutral, and
one (R1699Q in BRCA1) remains of uncertain significance. These results provide a demonstration of the utility of
the model.

Introduction

The identification of specific genes involved in a number
of common diseases has resulted in the integration of
genetic testing into clinical practice. For many of these
genes, the sequence variants that are identified include
known deleterious (often protein-truncating) mutations,
recognized polymorphisms assumed to be neutral in
terms of disease risk, and other variants (usually with
missense changes) of uncertain clinical relevance. The
last category poses problems for genetics counseling,
since tested individuals and their families are given a
seemingly ambiguous result, unless sufficient evidence is
available that a given missense change is deleterious. In
the case of the breast cancer susceptibility genes BRCA1
(MIM 113705) and BRCA2 (MIM 600185), these so-
called unclassified variants (UCVs) account for approx-
imately half of all unique variants detected (other than
common polymorphisms) (see Breast Cancer Informa-
tion Core [BIC] database Web site) and were identified

Received June 25, 2004; accepted for publication July 8, 2004; elec-
tronically published August 2, 2004.

Address for correspondence and reprints: Dr. David E. Goldgar, Unit
of Genetic Epidemiology, International Agency for Research on Cancer,
150 Cours Albert Thomas, 69008 Lyon, France. E-mail: goldgar
@iarc.fr

* Members of the BIC Steering Committee are listed in the Ac-
knowledgments section.

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7504-0002$15.00

in 13% of all women tested in one study (Frank et al.
2002). Thus, if one accepts that more rigorous screening
and/or other preventive measures are useful in lowering
morbidity and mortality in individuals who carry a high-
risk deleterious mutation in these genes, a relatively large
number of them could be helped by the classification of
these variants as neutral or deleterious. Although the
present article focuses on BRCA1 and BRCA2, similar
issues occur in genetic testing for other common dis-
orders for which major susceptibility genes have been
identified.

To address this important clinical problem, various
types of evidence may help to classify such variants as
deleterious or neutral, with respect to the disease of
interest. These include frequency of the variant in cases
and controls, co-occurrence of the variant with a known
deleterious mutation in one or more tested individuals
(under the assumption that either homozygosity for true
deleterious mutations is embryonically lethal or ho-
mozygotes will at least have a clearly recognizable phe-
notype), cosegregation of the variant with disease in
families, occurrence of disease in relatives of index cases
with a given variant, the nature and position of the
amino acid substitution, the degree of conservation of
amino acids among species, and the results of functional
assays. Each of these sources of evidence has particular
strengths and limitations in addressing the general prob-
lem of causality of sequence variants. These lines of
evidence are summarized in table 1.

We and others have examined such classification
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schemes by use of a variety of approaches. For example,
in terms of cosegregation of variants within a pedigree,
Thompson et al. (2003) provided a method of cal-
culating odds of causality for UCVs by use of complete
pedigree data. Petersen et al. (1998) performed a similar
study but used a more restricted approach. In terms of
conservation of amino acids across species, a number
of studies have been done. Miller and Kumar (2001)
validated the hypothesis that missense variants at highly
conserved/invariant residues would more often be del-
eterious, whereas highly variable changes would more
likely be neutral. With regard to BRCA1, Fleming et al.
(2003) and Abkevich et al. (2004) used the conservation
of BRCA1 residues in a variety of mammalian and non-
mammalian species to make preliminary classifications
of 139 (Fleming et al. 2003) and 146 (Abkevich et al.
2004) putative missense mutations. In terms of func-
tional assays, examination of BRCA1 has been limited
to two functional domains: the RING finger (residues
24–64) and the BRCT domain (residues 1642–1863).
Functional mammalian and yeast-based assays have fo-
cused on transcriptional activation by the BRCT do-
main (Vallon-Christersson et al. 2001). Recently, Mir-
kovic et al. (2004) used the three-dimensional protein
structure to develop a rule-based system for the clas-
sification of variants, applying this approach to 57 ob-
served constitutional missense variants in the BRCT do-
main of BRCA1. For BRCA2, analyses of functional
domains have focused on the DNA-binding region be-
tween amino acids 2373 and 3256 (Yang et al. 2002)
and on the eight 40–amino-acid BRC repeats in exon
11 that are associated with interaction of BRCA2 with
the RAD51-recombination and DNA-repair protein
(Wong et al. 1997; Chen et al. 1999; Davies et al. 2001).

A comprehensive model is needed, in which all these
sources of evidence can be used together to create a
combined assessment of a particular sequence variant
of interest. In this comprehensive model, both quan-
titative and qualitative evidence would be properly
weighted to arrive at a final classification. Ideally, the
end result would be the overall odds of causality—that
is, the ratio of the likelihood of the observed data under
the hypothesis of causality to that under the hypothesis
of neutrality. If all of the various types of evidence were
quantifiable in the same way, this would be straight-
forward. However, each type of evidence depends on
different models and underlying assumptions, and some
are more suitable to quantification and formulation as
a likelihood ratio than others. Here, we focus primarily
on the relevant data that can be evaluated directly on
a genetic/epidemiological basis, as these data are easily
quantifiable in terms of likelihood ratios; moreover, they
are most directly related to the clinical outcome of in-
terest—that is, the risk of developing cancer for a carrier
of the particular sequence variant under consideration.

Methods

For clarity, we assumed that all variants in the gene of
interest can be classified into two categories: “muta-
tions” (M) that predispose to a high risk of breast and
ovarian cancer and “neutral variants” (V) that cause no
risk. Thus, we make the important simplifying assump-
tion that variants do not have an intermediate risk. Al-
most all protein-truncating variants are known, with
high probability, to be mutations. The aim is to deter-
mine whether or not other variants are likely to be del-
eterious mutations. These include amino acid substitu-
tions, in-frame deletions, silent mutations, and some
intronic changes. We would like to determine statistically
the posterior probability that each variant (V) is a mu-
tation (M), given the available data:

Pr (MFData)

( )Pr (DataFM) Pr M
p .

( ) ( )Pr (DataFM) Pr M �Pr (DataFV) Pr V

The statistical analysis focuses on the likelihood ratio
(Pr[DataFM]/Pr[DataFV]). The choice of an appropriate
prior probability (Pr[M]) that a new variant is a mu-
tation is uncertain. However, given that there is a high
frequency of such variants and that only a few of the
variants can be unequivocally classified as mutations, it
is clear that the probability is low. At least 70% of the
families with breast or ovarian cancer that exhibit clear
linkage to BRCA1 or BRCA2 have been shown to har-
bor deleterious mutations; a significant fraction of the
remaining families (at least those linked to BRCA1) har-
bor large-scale rearrangements. We believe that the prior
probability of a given UCV being deleterious is !10%
and may be closer to 1%. This suggests that the appro-
priate likelihood threshold for declaring a variant to be
deleterious should be at least 1,000:1. The appropriate
threshold for declaring against causality is not as critical,
since this decision does not affect genetics counseling.
For the purposes of classification in the BIC, we suggest
a likelihood ratio of 100:1 against causality as a useful
criterion. Of course, the choice of threshold in each clin-
ical situation will vary according to the particular
circumstances.

Specific Contributions of Individual/Family Data
Components

Co-occurrence with deleterious mutations.—A variety
of mouse studies (Gowen et al. 1996; Liu et al. 1996;
Hohenstein et al. 2001) have indicated that homozy-
gosity for Brca1 is embryonically lethal. This finding is
reinforced by the clear deficit of BRCA1 homozygotes
and compound heterozygotes, compared with expected
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Figure 1 Flowchart of the procedure for classification of sequence variants of unknown clinical significance. ER p estrogen receptor
status; LR p likelihood ratio.

numbers, among a series of individuals with the founder
mutations 185delAG and 5382insC (0 observed vs. 6.5
expected) (Frank et al. 2002; Abkevich et al. 2004). For
each BRCA1 variant under consideration, we first ex-
amined the frequency of the mutation in the Myriad
Genetics Laboratories database, which contains com-
plete full-sequence data for both BRCA1 and BRCA2
from 120,000 individuals, as well as rudimentary family
and patient history. In the following analysis, we as-
sumed that individuals homozygous for a deleterious
mutation in BRCA1 or BRCA2 are extremely rare. If

the variant is neutral, the probability of an individual
with the variant also carrying (in trans) a deleterious
mutation, p1, can be roughly estimated as half the overall
frequency of deleterious mutations in the population be-
ing studied. If the variant is deleterious, this probability
becomes

p p Pr (Individual carries deleterious mutationF2

Individual carries variant and individual phenotype) .
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Thus, if one observes the variant n times, k of which are
in conjunction with a deleterious mutation, the appro-
priate likelihood ratio is given by the following binomial
likelihood ratio:

k n�k(p ) (1 � p )2 2 .k n�kp (1 � p )1 1

For BRCA1, the frequency of deleterious mutations in
the Myriad Genetics Laboratories database is 0.088
(1,765 known BRCA1 deleterious mutations in 20,000
tests). Taking into account the evidence that BRCA1
homozygotes and compound heterozygotes are vanish-
ingly rare and quite likely to be embryonically lethal,
we assumed for these calculations.p p 0.00012

For BRCA2, the corresponding estimate for the fre-
quency of deleterious mutations is 0.059. The fitness issue
here is slightly more problematic, since BRCA2 com-
pound heterozygotes have been found among individuals
with the rare recessive disease Fanconi anemia type D1
(Howlett et al. 2002; Wagner et al. 2004). However, it is
reasonable to assume that compound heterozygotes for
deleterious mutations in BRCA2 are extremely rare in
adults, since the Fanconi anemia phenotype usually leads
to death in early childhood. Taking into account the ad-
ditional uncertainty associated with BRCA2 homozygos-
ity, we assumed for these calculations. Onep p 0.0012

complication that arises in these data is the distinction
between mutations occurring in cis and those in trans.
Although the parental origin of the mutations is rarely
known, mutations occurring in cis can often be recognized
by recurrent observation of the same mutation/variant
combination, and we have ignored these instances in our
calculations.

The frequency of variants in groups of individuals, clas-
sified by likelihood of being a mutation carrier (i.e., fam-
ily history).—A substantial amount of family history in-
formation is available for BRCA1 and BRCA2. The most
important source, given the scope and completeness of
the genotyping, is the data obtained from sequencing by
Myriad Genetics Laboratories. The rationale here is that
mutation prevalence is known to be strongly dependent
on certain key factors (disease status of the proband, age
at diagnosis, and number and age of relatives with breast
or ovarian cancer), so these characteristics should also
predict the prevalence of a new disease-causing variant,
whereas the prevalence of a neutral variant should be
independent of family history. As a “proof of principle,”
we have examined the confirmed deleterious missense mu-
tation BRCA1 C61G, for which there are 57 occurrences
in the Myriad Genetics Laboratories database with family
history information available. We compared the family
histories of these 57 index cases with those of all known
deleterious mutations in the database by use of a multi-
nomial likelihood-ratio model, resulting in odds in favor

of causality of 11,000,000:1, showing the potential utility
of this approach, at least for relatively frequent variants.

Cosegregation data.—To assess causality from the co-
segregation data, we used the statistical model described
by Thompson et al. (2003). For these calculations, we
assumed an allele frequency of the variant of 0.0001 and
used the BRCA penetrance estimates that were based on
the recent meta-analysis of 22 population-based studies
(Antoniou et al. 2003), with pooling across age groups,
if necessary, depending on the level of detail of the family
history information. Although family-based estimates
might be more appropriate, we preferred to use these
estimates, since the criteria for testing differ markedly
among testing centers and the use of the population data
would, if anything, be conservative. We do not, at pre-
sent, allow for the possibility that a variant observed in
the proband is a de novo mutation, although this could
easily be incorporated into the model. Because, in many
cases, complete pedigree data were unavailable, we relied
on crude family history information and constructed
complete pedigrees by creating individuals of unknown
phenotype and genotype to connect the individuals in
the pedigree. Note that, since analysis of cosegregation
is conditional on the phenotypes in the family, the data
on cosegregation can be considered independent of the
data on family history (FH). The data from the co-oc-
currence of the variant with deleterious mutations are
independent of the other information as well, so that
these three likelihood ratios can be evaluated indepen-
dently and multiplied:

Pr (DataFM) Pr (FHFM) Pr (CosegregationFM)
p #

Pr (DataFV) Pr (FHFV) Pr (CosegregationFV)

Pr (Co-occurrenceFM)
# .

Pr (Co-occurrenceFV)

Incorporation of the Data on Sequence Conservation,
Nature of Substitution, and Functional Characteristics

These data are more difficult to evaluate statistically
than the data described above, since there is no direct
link between these data and cancer risk. Our approach
was to start with an initial model that was based on the
limited number of already-classified missense variants
for which data are available, and then, using the indi-
vidual-specific data described above, we iteratively re-
fined the estimated parameters as variants were classified
into either deleterious or neutral categories. We describe
below, in more detail, some initial models for this
process.

Severity of the amino acid substitution.—The idea here
is to use a score for the type of substitution and to derive
the likelihood ratio on the basis of the distribution of
this score in known neutral variants and known dele-
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terious mutations. One approach is to use the chemical-
difference matrix proposed by Grantham (1974) to pro-
duce a score (Grantham matrix score [GMS]) for the
observed substitution in the variant that is being inves-
tigated (GMSUV). We then determined the probability
density function of the two distributions of scores,

and , where the form and param-f(GMS; v ) f(GMS; v )M V

eterization, v, of f() depends on the distribution of the
data. The likelihood ratio for these data is then given
by

f(GMS ; v )UV M .
f(GMS ; v )UV V

As a preliminary strategy for incorporating these data,
we calculated the mean and SD of the GMS in known
deleterious BRCA1 missense mutations (excluding those
that are known to be splice mutations), as well as that
for known missense changes that are clearly neutral (e.g.,
common polymorphisms). For true deleterious missense
mutations, the mean and SD were 133 and 65, respec-
tively, whereas, for neutral variants, the corresponding
values were 65 and 39. Given the apparent relationship
between the mean and SD, we assumed that the distri-
bution of f(GMS; v) was lognormal, although, at present,
there are insufficient numbers of known deleterious and
neutral variants available to test the fit to this (or any
other) distribution. This approach assumes that the mech-
anism of action in cancer causation is the change in the
protein associated with the missense UCV. For variants
near the intron/exon boundary, however, this assump-
tion may not be valid, and the variant may be associated
with disease through alternative splicing. To avoid this
problem, such variants could be evaluated for their po-
tential effect on splicing by use of a predictive algorithm,
such as that used in the Berkeley Drosophila Genome
Project (see Berkeley Drosophila Genome Project Web
site). If possible, these variants were assessed through
evaluation of alternative splicing by use of mRNA from
blood samples of patients carrying the variant.

Conservation of the variant amino acid across spe-
cies.—Although mutations at fully conserved amino acids
are plausibly likely to be deleterious, it is not known
whether such mutations are invariably associated with an
increased cancer risk. Using sequence data from the genes
orthologous to human BRCA1 and BRCA2 in six and
four additional species, respectively, Abkevich et al.
(2004) derived a mathematical model for BRCA sequence
variation in which they postulated two types of amino
acid substitutions: one under functional constraint and
therefore slowly substituting (SS), and the other under no
selective pressure and therefore fast substituting (FS).
Thus, a UCV that results in an amino acid substitution
at an SS position might be expected to be deleterious,
whereas a UCV that occurs at an FS position is more

likely to be neutral. On the basis of the observed multiple
sequence alignments and a mathematical model, the rel-
ative fraction of the two types of changes can be estimated
for each possible number of different residues seen in the
multiple sequence alignment, and the relative odds of a
variant being of either type can be calculated under the
model. For example, under this model, a UCV in BRCA1
that changes a completely conserved amino acid is 10.4
times (125:12) more likely to be of the SS variety (and,
hence, more likely to be deleterious). If this classification
were completely concordant with the risk classification,
these would also be the odds in favor of causality. For
BRCA2, a similar procedure can be used, although the
limited number of species for which sequence data are
available reduces the discriminatory power. As more
BRCA sequence data become available, these models will
undoubtedly be improved.

Functional data.—These data are perhaps the most
difficult to put into a likelihood-based framework. This
is because there are a number of functional assays, each
of which potentially tests a different function of the pro-
tein. To incorporate these data into the model, it will be
necessary to have a larger set of variants with both (1)
clear classification (according to the specified thresholds)
of the deleterious and neutral categories and (2) func-
tional data from a variety of different assays. For this
reason, we have used functional data as qualitative sup-
porting evidence, without directly incorporating these
data into the likelihood-based evaluation.

On the basis of the data for which we have good initial
models relevant to cancer risk, we can easily combine
the relevant odds of causality. Those variants that are
classified with high probability (i.e., with odds for or
against causality reaching predefined thresholds) can
then be used to evaluate and refine statistical models
relating to functional or sequence-conservation data. As
more variants are classified, these models will become
more discriminating and, hence, more useful in the clas-
sification of variants for which there is insufficient family
history and cosegregation data to achieve a clinically
useful level of evidence for or against causality. This
process is detailed in the flowchart in figure 1.

Results

To illustrate the model, we have selected three UCVs in
BRCA1 and three in BRCA2 for analysis with the ap-
proaches described above. The likelihood ratios for each
of the components in the analysis, as well as the com-
bined odds for each of the six variants analyzed, are
discussed below and are summarized in table 2.
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Table 2

Odds in Favor of Each Variant Being Deleterious for the Six Variants Discussed in the
Text, for Each Source of Information and Overall

DATA SOURCE

ODDS IN FAVOR OF CAUSALITY FOR

BRCA1 BRCA2

C1787S R1699Q R841W Y42C P655R D2723H

Co-occurrence 1.2 1.4 .028 8.9 # 10�11 .007 2.0
Cosegregation 1,694 2.84 4 # 10�9 6.7 # 10�7 .48 13,731
GMS 1.5 .48 1.31 3.49 1.35 .98
Conservation 10.4 10.4 .006 .194a .004a 5.0
Overall odds 31,692 20 8.7 # 10�13 4 # 10�17 .00002 134,563

a Deleted residue counted as a substitution.

BRCA1

C1787S.—This variant has been observed four times,
but it has not been detected in any individual who also
carried a clear deleterious mutation. Two available fam-
ilies show evidence of cosegregation with disease-yield-
ing combined odds in favor of causality from the co-
segregation data of 1,694:1. Incorporation of the data
on co-occurrence yields overall odds in favor of causality
of 2,032:1. Thus, on the basis of the family data alone,
this variant could be classified as a disease-associated mu-
tation. The cysteine residue is completely conserved, in-
cluding in Xenopus and in the pufferfish Tetraodon. The
substitution to serine is associated with a GMS of 112,
compared with the average GMS for known polymor-
phisms of 60, the expected GMS value of 78 for a random
missense change, and a GMS of 133 for 16 previously
characterized deleterious missense mutations. The ge-
nomic data give odds of 15.5:1 in favor of the variant
being deleterious, consistent with the pedigree data. This
sequence variant has not yet been characterized function-
ally, but its effect on the three-dimensional protein struc-
ture has been modeled, and it is predicted to impact pro-
tein function (Mirkovic et al. 2004). It should be men-
tioned that the C1787S variant is always seen (presumably
in cis) with an additional variant, G1788D.

R1699Q.—This mutation has been observed seven
times in the Myriad Genetics Laboratories database, but
it has never been detected in an individual with a dele-
terious mutation. This provides odds of 1.4:1 in favor of
it being a deleterious mutation. Three small families with
multiple individuals who were tested for this variant were
available for analysis, leading to an overall cosegregation-
based odds ratio of 2.8:1 in favor of causality for this
variant. The combined odds from these two sources are
4:1 in favor of causality, and, therefore, this variant can-
not be classified on the basis of this evidence alone. As
with C1787S, the arginine residue is completely con-
served. However, the change from arginine to glutamine
yields a GMS of 43, lower than many of the known poly-
morphic substitutions. The combined odds ratio from the

genomic data is 4.99:1, again slightly in favor of causality.
In mammalian cells, this sequence variant showed clear
loss of transcriptional activation capability (Vallon-Chris-
tersson et al. 2001). It should be noted that another al-
teration in this same codon, R1699W, is considered by
Myriad Genetics Laboratories to be a deleterious muta-
tion, on the basis of both functional (Koonin et al. 1996;
Vallon-Christersson et al. 2001) and cosegregation data.

R841W.—This variant has been observed in the Myr-
iad Genetics Laboratories database 57 times, with 1 of
those observations occurring in an individual who also
carried a known deleterious mutation. Analysis of co-
segregation in six pedigrees with multiple individuals
tested showed quite convincing evidence against this var-
iant being a high-risk allele (250,000,000:1 against cau-
sality). Thus, this variant can be unequivocally assigned
to the neutral/nondisease-associated sequence variant
category.

In contrast to the previous two BRCA1 UCVs dis-
cussed above, this residue shows considerable variation
among the various orthologues, with three alternative
amino acids present and no conservation other than in
the Pan troglodytes sequence. The amino acid associated
with this variant, tryptophan, is not found in any of the
five other species with sequence data available. The se-
quence and substitution data give odds of ∼130:1
against causality, which supports the genetic data. Bar-
ker et al. (1996) have suggested that this variant may
be associated with a modest increased risk of breast can-
cer. Since our approach considers only the hypotheses
that the variant is high penetrance or is neutral, we can-
not exclude the possibility that R841W is associated
with a more moderate risk.

BRCA2

Y42C.—This mutation has been observed 144 times,
8 of which were in patients who also carried a known
BRCA2 deleterious mutation in trans with Y42C. We
analyzed 17 pedigrees with this UCV and the overall
odds against causality from these data were ∼1,500,000:
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1. Thus, on the basis of the pedigree cosegregation da-
ta alone, the odds are overwhelming against causality,
and the co-occurrence data provides, if anything, even
stronger evidence against causality.

For this variant, the tyrosine residue is conserved in
chicken but is deleted in the Tetraodon sequence. The
change from a tyrosine to a cysteine is one of the most
severe changes, as measured by the GMS (194). Thus, the
evidence based on sequence conservation and severity of
the amino acid substitution is equivocal (combined odds,
1.3:1 against causality). However, as noted above, the co-
occurrence and cosegregation data are overwhelmingly
against Y42C being a deleterious BRCA2 allele.

P655R.—This variant has been detected 63 times, twice
with a known deleterious mutation. Ten pedigrees were
analyzed for this variant and, taken together, exhibited
weak evidence against causality (2:1). The combined ev-
idence from the pedigree and co-occurrence data is 298:
1 against causality, which would exceed our suggested
threshold for classifying this as a neutral variant. This
residue is conserved in rat and dog but is deleted in
chicken and Tetraodon. The proline-to-arginine change
is associated with a GMS of 103, a score that is between
the average value for neutral changes and the value for
BRCA1 deleterious mutations.

D2723H.—This variant has been observed in the
Myriad Genetics Laboratories database 24 times and
has never appeared with a proven deleterious mutation.
The variant yields odds in favor of causality under the
BRCA2 co-occurrence model of 2.0:1. All 10 pedigrees
with multiple individuals tested for this variant showed
complete cosegregation with breast and ovarian cancer,
yielding overall odds of 13,731:1 in favor of causality.
Thus, the pedigree data provide odds of ∼57,000:1 in
favor of causality—more than sufficient to classify the
variant as deleterious by use of the suggested threshold
of 1,000:1. The aspartate residue is completely con-
served as far out as Tetraodon, although the GMS for
this substitution is only 81. A BRCA2 protein carrying
this variant showed disrupted DNA-repair capacity after
exposure to gamma irradiation and mitomycin-c, similar
to the deleterious truncating mutation 6174delT. More-
over, in 293T human embryonal kidney cancer cells, the
BRCA2 protein with D2723H showed aberrant cellular
localization, compared with the wild-type protein (K.
Wu, S. Hinson, A. Ohashi, S. Tavtigian, A. Deffenbaugh,
D. Goldgar, and F. Couch, unpublished data). Thus, in
our view, the BRCA2 D2723H variant can be classified
unequivocally as a deleterious BRCA2 allele.

Discussion

Although we have focused on the BRCA1 and BRCA2
genes, many of the methods described here are quite
general and can be used for any hereditary disease in

which the genes responsible are characterized by many
sequence variants for which it is difficult to assess a clear
association with disease. As genetic testing for common,
multifactorial diseases moves into clinical practice, the
problems associated with the interpretation of sequence
variants of unknown significance will result in psycho-
logical stress for patients and families and an increased
burden on genetics counselors. In addition to the obvious
clinical utility of developing and implementing a rigor-
ous classification procedure for UCVs, the process could
raise interesting questions about the biological basis of
the disease predisposition conferred by the gene being
studied. If, for example, a particular sequence variant
shows conclusive evidence of causality on the basis of
epidemiological data but functions normally in a specific
assay, this would lead us to infer that the function being
tested is perhaps not relevant to the disease process.

In addition to the main factors discussed extensively
above, a number of other pieces of data could aid the
classification of unknown sequence variants. These
might be somewhat dependent on the disease and the
gene being studied. For example, for BRCA1, we could
take advantage of the fact that there is strong evidence
that the pathology of BRCA1 tumors differs from that
of tumors in noncarriers of the same age (Breast Cancer
Linkage Consortium 1997; Lakhani et al. 1998). Pro-
vided that one assumes that the pathological charac-
teristics of tumors are not dependent on other familial
factors, the odds based on pathological characteristics
can be multiplied across all tumors carrying that specific
germline UCV.

Another piece of information that could potentially
be incorporated into such models, at least for many
tumor-suppressor genes, is loss of heterozygosity (LOH)
in tumors carrying the putative causal variant. For ex-
ample, in BRCA1, ∼85% of tumors exhibit LOH at
BRCA1, compared with ∼30% of breast cancers in non-
carriers. Moreover, the LOH invariably involves the
wild-type chromosome (Cornelis et al. 1995). Similar
arguments apply to BRCA2 and to several other cancer-
predisposition genes. Methods for incorporating LOH
data into linkage analysis have been developed (Reb-
beck et al. 1994), and this approach could be used to
extend the cosegregation analysis.

For almost all the lines of evidence we have consid-
ered, it is clearly easier to obtain high odds in favor of
neutrality than it is to show causality. This is similar to
the situation in linkage analysis in which a single re-
combinant event is sufficient to exclude tight linkage
but a much larger number of events is required to pro-
vide significant evidence in favor of linkage. It should
be emphasized that our classification evaluation is based
on the relative likelihood of the observed data under
two specific hypotheses: that of complete neutrality of
the variant (i.e., it confers no increased risk of disease)
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and that of what we have termed as “causality” (i.e.,
the risk of disease conferred by the variant under con-
sideration is comparable to the risk conferred by known
mutations). Whether this is appropriate for all disease
genes (and for which ones) is an important consider-
ation in the application of this approach to a particular
problem. If, for example, a particular missense mutation
were associated with an intermediate risk, it might be
classified in the deleterious or the neutral category, de-
pending on the type of data available. Clearly, in this
situation, more sophisticated models will be required.
One of the expectations for such intermediate-risk var-
iants is that they will prove difficult to classify, in spite
of a substantial amount of data. This is a result of the
potential for conflicting data from the various sources,
which would make it difficult to achieve the specified
thresholds for classification as either neutral or delete-
rious. If sufficient pedigrees are available for such var-
iants and if these pedigrees have a reasonable number
of individuals typed for the variant, it may be possible
to estimate directly (through pedigree or case-control
studies) the risk associated with the variant, although
the derived estimate is likely to have wide confidence
limits.

The classification of variants should ideally be based
on clinical observations, since these are directly related
to cancer risk and, hence, are the most relevant and also
the most straightforward to quantify. On the basis of
clinical information and our assumed models and thresh-
olds, we were able to classify five of the six variants we
studied as either deleterious or neutral. The additional
value of the genomic data in these cases was less clear,
but, in general, the genomic data supported the clinical
data. It is interesting to note that, in each case, the score
derived from species conservation pointed in the same
direction as the clinical data, although the odds were
much weaker. The GMSs, however, were inconsistent,
giving odds in the opposite direction in four of the five
classifiable cases and calling into question the utility of
this measure in the classification process.

In summary, we believe that this multidisciplinary ap-
proach to evaluation of sequence variants of unknown
significance provides a system of checks and balances and
avoids overreliance on one source of information. This
should result in more-reliable classification of such var-
iants, which in turn will improve the clinical utility of
genetic tests now being offered to patients and their fam-
ilies. The work presented here represents only the first
step in an ongoing process. Additional work remains to
be done, including the examination of the robustness of
the method against violations of basic assumptions, the
incorporation of this uncertainty into the model, the val-
idation of each of the individual components through the
accumulation of large amounts of additional data, and

the development of other approaches to the integration
of the various components into a comprehensive model.
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